- integrable operator
- мат.интегрируемый оператор
English-Russian scientific dictionary. 2008.
English-Russian scientific dictionary. 2008.
Integrable system — In mathematics and physics, there are various distinct notions that are referred to under the name of integrable systems. In the general theory of differential systems, there is Frobenius integrability, which refers to overdetermined systems. In… … Wikipedia
Compact operator on Hilbert space — In functional analysis, compact operators on Hilbert spaces are a direct extension of matrices: in the Hilbert spaces, they are precisely the closure of finite rank operators in the uniform operator topology. As such, results from matrix theory… … Wikipedia
Self-adjoint operator — In mathematics, on a finite dimensional inner product space, a self adjoint operator is one that is its own adjoint, or, equivalently, one whose matrix is Hermitian, where a Hermitian matrix is one which is equal to its own conjugate transpose.… … Wikipedia
Differential operator — In mathematics, a differential operator is an operator defined as a function of the differentiation operator. It is helpful, as a matter of notation first, to consider differentiation as an abstract operation, accepting a function and returning… … Wikipedia
Bounded operator — In functional analysis, a branch of mathematics, a bounded linear operator is a linear transformation L between normed vector spaces X and Y for which the ratio of the norm of L(v) to that of v is bounded by the same number, over all non zero… … Wikipedia
Multiplication operator — In operator theory, a multiplication operator is a linear operator T defined on some vector space of functions and whose value at a function φ is given by multiplication by a fixed function f. That is, for all φ in the function space and all x in … Wikipedia
Volterra operator — In mathematics, in the area of functional analysis and operator theory, the Volterra operator represents the operation of indefinite integration, viewed as a bounded linear operator on the space L 2(0,1) of complex valued square integrable… … Wikipedia
Position operator — In quantum mechanics, the position operator corresponds to the position observable of a particle. Consider, for example, the case of a spinless particle moving on a line. The state space for such a particle is L 2(R), the Hilbert space of complex … Wikipedia
Toeplitz operator — In operator theory, a Toeplitz operator is the compression of a multiplication operator on the circle to the Hardy space. Details Let S 1 be the circle, with the standard Lebesgue measure, and L 2( S 1) be the Hilbert space of square integrable… … Wikipedia
Jacobi-Operator — Ein Jacobi Operator, nach Carl Gustav Jakob Jacobi, ist ein symmetrischer linearer Operator der auf Folgen operiert und der in der durch Kronecker Deltas gegebenen Standardbasis durch eine tridiagonale Matrix dargestellt wird. Selbstadjungierte… … Deutsch Wikipedia
Hilbert space — For the Hilbert space filling curve, see Hilbert curve. Hilbert spaces can be used to study the harmonics of vibrating strings. The mathematical concept of a Hilbert space, named after David Hilbert, generalizes the notion of Euclidean space. It… … Wikipedia